enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shapiro–Wilk test - Wikipedia

    en.wikipedia.org/wiki/ShapiroWilk_test

    The ShapiroWilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).

  3. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    ShapiroWilk test: interval: univariate: 1: Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test: interval: univariate: 1: Normality test: Simpliplification of ShapiroWilk test Lilliefors test: interval: 1: Normality test

  4. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, ShapiroWilk test, and; Pearson's chi-squared test.

  5. Q–Q plot - Wikipedia

    en.wikipedia.org/wiki/Q–Q_plot

    More generally, ShapiroWilk test uses the expected values of the order statistics of the given distribution; the resulting plot and line yields the generalized least squares estimate for location and scale (from the intercept and slope of the fitted line). [9]

  6. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    N = the sample size The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the ...

  7. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    A normal quantile plot for a simulated set of test statistics that have been standardized to be Z-scores under the null hypothesis. The departure of the upper tail of the distribution from the expected trend along the diagonal is due to the presence of substantially more large test statistic values than would be expected if all null hypotheses were true.

  8. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.

  9. JASP - Wikipedia

    en.wikipedia.org/wiki/JASP

    Equivalence T-Tests: Test the difference between two means with an interval-null hypothesis. JAGS: Implement Bayesian models with the JAGS program for Markov chain Monte Carlo. Learn Bayes: Learn Bayesian statistics with simple examples and supporting text. Learn Stats: Learn classical statistics with simple examples and supporting text.