Search results
Results from the WOW.Com Content Network
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
Chemical formula. C 23 H 38 N 7 O 17 P 3 S: Molar mass: 809.57 g·mol −1 ... In cellular respiration; Citric acid cycle: Through a series of chemical reactions, ...
In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction to the surrounding environment by a Respiratory system. [1]
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
The equation for the reaction of glucose to form lactic acid is: C 6 H 12 O 6 + 2 ADP + 2 P i → 2 CH 3 CH(OH)COOH + 2 ATP + 2 H 2 O. Anaerobic respiration is respiration in the absence of O 2. Prokaryotes can utilize a variety of electron acceptors. These include nitrate, sulfate, and carbon dioxide.
Chemical formula. C 3 H 4 O 3 ... when oxygen is present (aerobic respiration), ... Pyruvate is an important chemical compound in biochemistry.
Cellular respiration, for instance, is the oxidation of glucose (C 6 H 12 O 6) to CO 2 and the reduction of oxygen to water. The summary equation for cellular respiration is: C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 H 2 O + Energy. The process of cellular respiration also depends heavily on the reduction of NAD + to NADH and the reverse reaction ...
ADP can be converted, or powered back to ATP through the process of releasing the chemical energy available in food; in humans, this is constantly performed via aerobic respiration in the mitochondria. [2] Plants use photosynthetic pathways to convert and store energy from sunlight, also conversion of ADP to ATP. [3]