Search results
Results from the WOW.Com Content Network
Resonance made visible with black seeds on a harpsichord soundboard Cornstarch and water solution under the influence of sine wave vibration A demonstration of sand forming cymatic patterns on a metal plate. Cymatics (from Ancient Greek: κῦμα, romanized: kŷma, lit. 'wave') is a subset of modal vibrational phenomena.
This book was a written and photographic documentation of the effects of sound vibrations on fluids, powders and liquid paste. He concluded, "This is not an unregulated chaos; it is a dynamic but ordered pattern." Jenny made use of crystal oscillators and his so-called tonoscope to set plates and membranes vibrating.
In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.
The frequency of a sound is defined as the number of repetitions of its waveform per second, and is measured in hertz; frequency is inversely proportional to wavelength (in a medium of uniform propagation velocity, such as sound in air). The wavelength of a sound is the distance between any two consecutive matching points on the waveform.
Acoustic holography is a technique that allows three-dimensional distributions of sound waves called sound fields to be stored and reconstructed. To do this, sound passing through a surface is recorded as a two-dimensional pattern called a hologram (a type of interferogram). The hologram contains information about the phase and amplitude of the ...
A Rubens tube, also known as a standing wave flame tube, or simply flame tube, is a physics apparatus for demonstrating acoustic standing waves in a tube. Invented by German physicist Heinrich Rubens in 1905, it graphically shows the relationship between sound waves and sound pressure, as a primitive oscilloscope. Today, it is used only ...
The color names for these different types of sounds are derived from a loose analogy between the spectrum of frequencies of sound wave present in the sound (as shown in the blue diagrams) and the equivalent spectrum of light wave frequencies. That is, if the sound wave pattern of "blue noise" were translated into light waves, the resulting ...
Rarefaction waves expand with time (much like sea waves spread out as they reach a beach); in most cases rarefaction waves keep the same overall profile ('shape') at all times throughout the wave's movement: it is a self-similar expansion. Each part of the wave travels at the local speed of sound, in the local medium.