Search results
Results from the WOW.Com Content Network
The lac operon is a negatively controlled inducible operon, where the inducer molecule is allolactose. In negative repressible operons , transcription of the operon normally takes place. Repressor proteins are produced by a regulator gene , but they are unable to bind to the operator in their normal conformation.
Inducible systems - An inducible system is off unless there is the presence of some molecule (called an inducer) that allows for gene expression. The molecule is said to "induce expression". The manner by which this happens is dependent on the control mechanisms as well as differences between prokaryotic and eukaryotic cells.
The inducible enzyme is used for the breaking-down of things in the cell. It is also a part of the Operon Model, which illustrates a way for genes to turn "on" and "off". The inducer causes the gene to turn on (controlled by the amount of reactant which turns the gene on). Then there's the repressor protein that turns genes off.
An inducer functions in two ways; namely: By disabling repressors. The gene is expressed because an inducer binds to the repressor. The binding of the inducer to the repressor prevents the repressor from binding to the operator. RNA polymerase can then begin to transcribe operon genes. By binding to activators.
For example, the E. coli tryptophan repressor (TrpR) is only able to bind to DNA and repress transcription of the trp operon when its corepressor tryptophan is bound to it. TrpR in the absence of tryptophan is known as an aporepressor and is inactive in repressing gene transcription. [2]
This operon is an example of repressible negative regulation of gene expression. The repressor protein binds to the operator in the presence of tryptophan (repressing transcription ) and is released from the operon when tryptophan is absent (allowing transcription to proceed).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Genetic regulatory circuits (also referred to as transcriptional regulatory circuits) is a concept that evolved from the Operon Model discovered by François Jacob and Jacques Monod. [1] [2] [3] They are functional clusters of genes that impact each other's expression through inducible transcription factors and cis-regulatory elements. [4] [5]