Search results
Results from the WOW.Com Content Network
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop.All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two numbers that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted F n .
For loop illustration, from i=0 to i=2, resulting in data1=200. A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax, there are many differences in how these statements work and the level of expressiveness they support.
For example, for p = 3 one has π 1 (3) = 8 which equals 3 2 − 1 = 8; for p = 7, one has π 1 (7) = 16, which properly divides 7 2 − 1 = 48. This analysis fails for p = 2 and p is a divisor of the squarefree part of k 2 + 4, since in these cases are zero divisors , so one must be careful in interpreting 1/2 or k 2 + 4 {\displaystyle {\sqrt ...
F gives the empty product (defined as the multiplicative identity, i.e. 1). The Fibonorial n! F is defined analogously to the factorial n!. The Fibonorial numbers are used in the definition of Fibonomial coefficients (or Fibonacci-binomial coefficients) similarly as the factorial numbers are used in the definition of binomial coefficients.
The Hungarian-British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.