Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
Taylor's theorem is named after the mathematician Brook Taylor, who stated a version of it in 1715, [2] although an earlier version of the result was already mentioned in 1671 by James Gregory. [ 3 ] Taylor's theorem is taught in introductory-level calculus courses and is one of the central elementary tools in mathematical analysis .
Similarly for normal random variables, it is also possible to approximate the variance of the non-linear function as a Taylor series expansion as: V a r [ f ( X ) ] ≈ ∑ n = 1 n m a x ( σ n n ! ( d n f d X n ) X = μ ) 2 V a r [ Z n ] + ∑ n = 1 n m a x ∑ m ≠ n σ n + m n ! m !
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems , linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems . [ 1 ]
Another estimator based on the Taylor expansion is [3] = where n is the sample size, N is the population size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively.
Taylor expansion. Add languages. Add links. ... Upload file; Special pages; ... Get shortened URL; Download QR code; Print/export Download as PDF; Printable version ...
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.