enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    In probability theory, the complement of any event A is the event [not A], i.e. the event that A does not occur. [1] The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A.

  3. Probability axioms - Wikipedia

    en.wikipedia.org/wiki/Probability_axioms

    From the Kolmogorov axioms, one can deduce other useful rules for studying probabilities. The proofs [6] [7] [8] of these rules are a very insightful procedure that illustrates the power of the third axiom, and its interaction with the prior two axioms. Four of the immediate corollaries and their proofs are shown below:

  4. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement is named after Issai Schur [1] who used it to prove Schur's lemma, although it had been used previously. [2] Emilie Virginia Haynsworth was the first to call it the Schur complement. [3] The Schur complement is a key tool in the fields of numerical analysis, statistics, and matrix analysis.

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The opposite or complement of an event A is the event [not A] (that is, the event of A not occurring), often denoted as ′,, ¯,,, or ; its probability is given by P(not A) = 1 − P(A). [31] As an example, the chance of not rolling a six on a six-sided die is 1 – (chance of rolling a six) = 1 − ⁠ 1 / 6 ⁠ = ⁠ 5 / 6 ⁠ .

  6. Complement (set theory) - Wikipedia

    en.wikipedia.org/wiki/Complement_(set_theory)

    If A is a set, then the absolute complement of A (or simply the complement of A) is the set of elements not in A (within a larger set that is implicitly defined). In other words, let U be a set that contains all the elements under study; if there is no need to mention U, either because it has been previously specified, or it is obvious and unique, then the absolute complement of A is the ...

  7. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    [citation needed] One author uses the terminology of the "Rule of Average Conditional Probabilities", [4] while another refers to it as the "continuous law of alternatives" in the continuous case. [5] This result is given by Grimmett and Welsh [6] as the partition theorem, a name that they also give to the related law of total expectation.

  8. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Bayes' theorem is named after Thomas Bayes (/ b eɪ z /), a minister, statistician, and philosopher.Bayes used conditional probability to provide an algorithm (his Proposition 9) that uses evidence to calculate limits on an unknown parameter.

  9. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.