enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    Symmetric polynomials also form an interesting structure by themselves, independently of any relation to the roots of a polynomial. In this context other collections of specific symmetric polynomials, such as complete homogeneous, power sum, and Schur polynomials play important roles alongside the

  3. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

  4. Power sum symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Power_sum_symmetric_polynomial

    The following lists the power sum symmetric polynomials of positive degrees up to n for the first three positive values of . In every case, = is one of the polynomials. The list goes up to degree n because the power sum symmetric polynomials of degrees 1 to n are basic in the sense of the theorem stated below.

  5. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/.../Elementary_symmetric_polynomial

    In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials.

  6. Symmetrization - Wikipedia

    en.wikipedia.org/wiki/Symmetrization

    The symmetrization and antisymmetrization of a bilinear map are bilinear; thus away from 2, every bilinear form is a sum of a symmetric form and a skew-symmetric form, and there is no difference between a symmetric form and a quadratic form. At 2, not every form can be decomposed into a symmetric form and a skew-symmetric form.

  7. Newton's identities - Wikipedia

    en.wikipedia.org/wiki/Newton's_identities

    The Newton identities also permit expressing the elementary symmetric polynomials in terms of the power sum symmetric polynomials, showing that any symmetric polynomial can also be expressed in the power sums. In fact the first n power sums also form an algebraic basis for the space of symmetric polynomials.

  8. Symmetric algebra - Wikipedia

    en.wikipedia.org/wiki/Symmetric_algebra

    The symmetric tensors of degree n form a vector subspace (or module) Sym n (V) ⊂ T n (V). The symmetric tensors are the elements of the direct sum = ⁡ (), which is a graded vector space (or a graded module). It is not an algebra, as the tensor product of two symmetric tensors is not symmetric in general.

  9. Symmetric tensor - Wikipedia

    en.wikipedia.org/wiki/Symmetric_tensor

    Also, in diffusion MRI one often uses symmetric tensors to describe diffusion in the brain or other parts of the body. Ellipsoids are examples of algebraic varieties; and so, for general rank, symmetric tensors, in the guise of homogeneous polynomials, are used to define projective varieties, and are often studied as such.