Search results
Results from the WOW.Com Content Network
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.
An undamped spring–mass system is an oscillatory system. Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
The phase of a simple harmonic oscillation or sinusoidal signal is the value of in the following functions: = (+) = (+) = (+) where , , and are constant parameters called the amplitude, frequency, and phase of the sinusoid.
These equations represent the simple harmonic motion of the pendulum with an added coupling factor of the spring. [1] This behavior is also seen in certain molecules (such as CO 2 and H 2 O), wherein two of the atoms will vibrate around a central one in a similar manner. [1]
The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .
Phase portrait of van der Pol's equation, + + =. Simple pendulum, see picture (right). Simple harmonic oscillator where the phase portrait is made up of ellipses centred at the origin, which is a fixed point. Damped harmonic motion, see animation (right).