Search results
Results from the WOW.Com Content Network
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
Blood sugar regulation is the process by which the levels of blood sugar, the common name for glucose dissolved in blood plasma, are maintained by the body within a narrow range. The regulation of glucose levels through Homeostasis. This tight regulation is referred to as glucose homeostasis.
Glycogenesis is the process of glycogen synthesis or the process of converting glucose into glycogen in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle , in the liver , and also activated by insulin in response to high glucose levels .
Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1] In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the ...
For prokaryotes, this process occurs at the plasma membrane. In both cases, the acceptor substrate is an asparagine residue. The asparagine residue linked to an N -linked oligosaccharide usually occurs in the sequence Asn-X-Ser/Thr, [ 7 ] where X can be any amino acid except for proline , although it is rare to see Asp, Glu, Leu, or Trp in this ...
Glucose-6-phosphate is the product of glycogenolysis or gluconeogenesis, where the goal is to increase free glucose in the blood due body being in catabolic state. Other cells such as muscle and brain cells do not contain glucose 6-phosphatase.
The donor molecule is often an activated nucleotide sugar. The process is non-templated (unlike DNA transcription or protein translation); instead, the cell relies on segregating enzymes into different cellular compartments (e.g., endoplasmic reticulum, cisternae in Golgi apparatus). Therefore, glycosylation is a site-specific modification.
Carbohydrate synthesis is a sub-field of organic chemistry concerned with generating complex carbohydrate structures from simple units (monosaccharides). The generation of carbohydrate structures usually involves linking monosaccharides or oligosaccharides through glycosidic bonds, a process called glycosylation.