Search results
Results from the WOW.Com Content Network
A neutrino (/ nj uː ˈ t r iː n oʊ / new-TREE-noh; denoted by the Greek letter ν) is an elementary particle that interacts via the weak interaction and gravity. [2] [3] The neutrino is so named because it is electrically neutral and because its rest mass is so small that it was long thought to be zero.
Neutrinos are very hard to detect due to their non-interactive nature. In order to detect neutrinos, scientists have to shield the detectors from cosmic rays, which can penetrate hundreds of meters of rock. Neutrinos, on the other hand, can go through the entire planet without being absorbed, like "ghost particles".
Neutrinos are known to oscillate, so that neutrinos of definite flavor do not have definite mass: Instead, they exist in a superposition of mass eigenstates. The hypothetical heavy right-handed neutrino, called a " sterile neutrino ", has been omitted.
The electron neutrino ( ν e) is an elementary particle which has zero electric charge and a spin of 1 ⁄ 2.Together with the electron, it forms the first generation of leptons, hence the name electron neutrino.
Supernova neutrinos are weakly interactive elementary particles produced during a core-collapse supernova explosion. [1] A massive star collapses at the end of its life, emitting on the order of 10 58 neutrinos and antineutrinos in all lepton flavors . [ 2 ]
The cosmic neutrino background (CNB or C ν B [a]) is the universe's background particle radiation composed of neutrinos.They are sometimes known as relic neutrinos.. The C ν B is a relic of the Big Bang; while the cosmic microwave background radiation (CMB) dates from when the universe was 379,000 years old, the C ν B decoupled (separated) from matter when the universe was just one second old.
Neutrinos date back to the Big Bang, and trillions zoom through our bodies every second. They spew from stars like the sun and stream out when atomic bits collide in a particle accelerator. Scientists have known about the existence of neutrinos for almost a century, but they’re still in the early stages of figuring out what the particles ...
Solar neutrinos are produced in the core of the Sun through various nuclear fusion reactions, each of which occurs at a particular rate and leads to its own spectrum of neutrino energies. Details of the more prominent of these reactions are described below. Solar neutrinos (proton–proton chain) in the standard solar model