enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.

  3. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    The skewness value can be positive, zero, negative, or undefined. For a unimodal distribution (a distribution with a single peak), negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness ...

  4. Fat-tailed distribution - Wikipedia

    en.wikipedia.org/wiki/Fat-tailed_distribution

    A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. [when defined as?] In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed ...

  5. Moment (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(mathematics)

    (Equivalently, as in the next section, excess kurtosis is the fourth cumulant divided by the square of the second cumulant.) [4] [5] If a distribution has heavy tails, the kurtosis will be high (sometimes called leptokurtic); conversely, light-tailed distributions (for example, bounded distributions such as the uniform) have low kurtosis ...

  6. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).

  7. Skellam distribution - Wikipedia

    en.wikipedia.org/wiki/Skellam_distribution

    Examples of the probability mass function for the Skellam distribution. The horizontal axis is the index k. (The function is only defined at integer values of k. The connecting lines do not indicate continuity.) Parameters, Support

  8. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    The null hypothesis is a joint hypothesis of the skewness being zero and the excess kurtosis being zero. Samples from a normal distribution have an expected skewness of 0 and an expected excess kurtosis of 0 (which is the same as a kurtosis of 3). As the definition of JB shows, any deviation from this increases the JB statistic.

  9. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    The kurtosis goes to infinity for high and low values of , but for = / the two-point distributions including the Bernoulli distribution have a lower excess kurtosis, namely −2, than any other probability distribution.