Search results
Results from the WOW.Com Content Network
The inductive effect can be used to determine the stability of a molecule depending on the charge present on the atom and the groups bonded to the atom. For example, if an atom has a positive charge and is attached to a - I group its charge becomes 'amplified' and the molecule becomes more unstable.
The inductive effect is the transmission of charge through covalent bonds and Bent's rule provides a mechanism for such results via differences in hybridisation. In the table below, [ 26 ] as the groups bonded to the central carbon become more electronegative, the central carbon becomes more electron-withdrawing as measured by the polar ...
The polarization of a molecule through its bonds is a separate phenomenon known as induction. [3] Field effects are relatively weak, and diminish rapidly with distance, but have still been found to alter molecular properties such as acidity. [1] Field effect on a carbonyl arising from the dipole in a C-F bond.
Electron-withdrawing groups exert an "inductive" or "electron-pulling" effect on covalent bonds. The strength of the electron-withdrawing group is inversely proportional to the pKa of the carboxylic acid. [2] The inductive effect is cumulative: trichloroacetic acid is 1000x stronger than chloroacetic acid.
The inductive and resonance properties compete with each other but the resonance effect dominates for purposes of directing the sites of reactivity. For nitration, for example, fluorine directs strongly to the para position because the ortho position is inductively deactivated (86% para , 13% ortho , 0.6% meta ).
Identification of the molecular ion can be difficult. Examining organic compounds, the relative intensity of the molecular ion peak diminishes with branching and with increasing mass in a homologous series. In the spectrum for toluene for example, the molecular ion peak is located at 92 m/z corresponding to its molecular mass. Molecular ion ...
An electric effect influences the structure, reactivity, or properties of a molecule but is neither a traditional bond nor a steric effect. [1] In organic chemistry , the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry ( stereochemistry ) of a molecule.
Field effects, F, are defined to include all effects (inductive and pure field). Likewise, effects due to resonance, R, are due to the average of electron-donating ability and electron-accepting ability. These two effects are assumed to be independent of each other and therefore can be written as a linear combination: