enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The singular value decomposition is very general in the sense that it can be applied to any ⁠ ⁠ matrix, whereas eigenvalue decomposition can only be applied to square diagonalizable matrices. Nevertheless, the two decompositions are related.

  3. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  4. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. [1]

  8. Tensor decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_decomposition

    In multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors. [ 1 ] [ 2 ] [ 3 ] Many tensor decompositions generalize some matrix decompositions .

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.