Search results
Results from the WOW.Com Content Network
The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago. [ 8 ] [ notes 1 ] Within the framework of general relativity , an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ , equivalent to the presence of ...
The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day. The orange line shows the present-day distance between the quasar and Earth, about 28 billion light-years, which is a larger distance than the age of the universe multiplied by the speed of light, ct.
The term Friedmann equation sometimes is used only for the first equation. [3] a is the scale factor, G, Λ, and c are universal constants (G is the Newtonian constant of gravitation, Λ is the cosmological constant with dimension length −2, and c is the speed of light in vacuum).
Even light itself does not have a "velocity" of c in this sense; the total velocity of any object can be expressed as the sum = + where is the recession velocity due to the expansion of the universe (the velocity given by Hubble's law) and is the "peculiar velocity" measured by local observers (with = ˙ () and = ˙ (), the dots indicating a ...
The Friedmann equations showed the universe might be expanding, and presented the expansion speed if that were the case. [5] Before Hubble, astronomer Carl Wilhelm Wirtz had, in 1922 [ 6 ] and 1924, [ 7 ] deduced with his own data that galaxies that appeared smaller and dimmer had larger redshifts and thus that more distant galaxies recede ...
In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed ...
According to Hubble's law, the expansion of the universe causes distant galaxies to appear to recede from us faster than the speed of light. However, the recession speed associated with Hubble's law , defined as the rate of increase in proper distance per interval of cosmological time , is not a velocity in a relativistic sense.
Using the dimensionless scale factor to characterize the expansion of the universe, the effective energy densities of radiation and matter scale differently. This leads to a radiation-dominated era in the very early universe but a transition to a matter-dominated era at a later time and, since about 4 billion years ago, a subsequent dark-energy ...