Search results
Results from the WOW.Com Content Network
The red line is the path of a light beam emitted by the quasar about 13 billion years ago and reaching Earth at the present day. The orange line shows the present-day distance between the quasar and Earth, about 28 billion light-years, which is a larger distance than the age of the universe multiplied by the speed of light, ct.
Spectral lines of their light can be used to determine their redshift. For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over ...
Even light itself does not have a "velocity" of c in this sense; the total velocity of any object can be expressed as the sum = + where is the recession velocity due to the expansion of the universe (the velocity given by Hubble's law) and is the "peculiar velocity" measured by local observers (with = ˙ () and = ˙ (), the dots indicating a ...
This would imply an age of the universe less than 1/H (which is about 14 billion years). For instance, a value for q of 1/2 (once favoured by most theorists) would give the age of the universe as 2/(3H). The discovery in 1998 that q is apparently negative means that the universe could actually be older than 1/H.
Recessional velocity is the rate at which an extragalactic astronomical object recedes (becomes more distant) from an observer as a result of the expansion of the universe. [1] It can be measured by observing the wavelength shifts of spectral lines emitted by the object, known as the object's cosmological redshift.
It represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, as in the Hubble horizon, but rather the speed of light ...
This distance is the time that it took light to reach the observer from the object multiplied by the speed of light. For instance, the radius of the observable universe in this distance measure becomes the age of the universe multiplied by the speed of light (1 light year/year), which turns out to be approximately 13.8 billion light years.
Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, [1] so its distance at the present epoch defines the size of the observable universe. [2] Due to the expansion of the universe, it is not simply the age of the universe times the speed of light ...