enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    The method of separation of variables is also used to solve a wide range of linear partial differential equations with boundary and initial conditions, such as the heat equation, wave equation, Laplace equation, Helmholtz equation and biharmonic equation.

  3. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  4. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.

  5. Finite element method - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method

    We used piecewise linear basis functions in our discussion, but it is common to use piecewise polynomial basis functions. Separate consideration is the smoothness of the basis functions. For second-order elliptic boundary value problems, piecewise polynomial basis function that is merely continuous suffice (i.e., the derivatives are ...

  6. Elliptic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Elliptic_partial...

    The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.

  7. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  8. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...

  9. Parabolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Parabolic_partial...

    A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...