enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Event horizon - Wikipedia

    en.wikipedia.org/wiki/Event_horizon

    In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. [1]In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. [2]

  3. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    General relativity predicts that any object collapsing beyond a certain point (for stars this is the Schwarzschild radius) would form a black hole, inside which a singularity (covered by an event horizon) would be formed. [2] The Penrose–Hawking singularity theorems define a singularity to have geodesics that cannot be extended in a smooth ...

  4. Trapped surface - Wikipedia

    en.wikipedia.org/wiki/Trapped_surface

    The set of all such vectors engenders one outgoing and one ingoing null congruence. The surface is designated trapped if the cross sections of both congruences decrease in area as they exit the surface; and this is apparent in the mean curvature vector, which is: H ɑ = −θ + k − ɑ − θ − k + ɑ

  5. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...

  6. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    The constant solution inside the event horizon is continued by a constant solution in a white hole. When the angular momentum is not zero we can replace the dependence on proper time by a dependence on the angle φ {\textstyle \varphi } using the definition of h {\textstyle h}

  7. Apparent horizon - Wikipedia

    en.wikipedia.org/wiki/Apparent_horizon

    Within an apparent horizon, light does not move outward; this is in contrast with the event horizon. In a dynamical spacetime, there can be outgoing light rays exterior to an apparent horizon (but still interior to the event horizon). An apparent horizon is a local notion of the boundary of a black hole, whereas an event horizon is a global notion.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.