Search results
Results from the WOW.Com Content Network
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).
Spaces within a formula must be directly managed (for example by including explicit hair or thin spaces). Variable names must be italicized explicitly, and superscripts and subscripts must use an explicit tag or template. Except for short formulas, the source of a formula typically has more markup overhead and can be difficult to read.
A substitute for a derivative of f:R n → X is the metric differential of f at a point z in R n which is a function on R n defined by the limit (,) = ((+), ())whenever the limit exists (here d X denotes the metric on X).
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...
Other functions cannot be differentiated at all, giving rise to the concept of differentiability. A closely related concept to the derivative of a function is its differential. When x and y are real variables, the derivative of f at x is the slope of the tangent line to the graph of f at x.
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.