Search results
Results from the WOW.Com Content Network
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O(2 p(n)) time, where p(n) is a polynomial function of n. A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem in EXPTIME has a polynomial-time many-one reduction to it. A number of problems are known to be EXPTIME-complete.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
In the formulation given above, the scalars x n are replaced by vectors x n and instead of dividing the function f(x n) by its derivative f ′ (x n) one instead has to left multiply the function F(x n) by the inverse of its k × k Jacobian matrix J F (x n). [20] [21] [22] This results in the expression
How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.
If an equation P(x) = 0 of degree n has a rational root α, the associated polynomial can be factored to give the form P(X) = (X – α)Q(X) (by dividing P(X) by X – α or by writing P(X) – P(α) as a linear combination of terms of the form X k – α k, and factoring out X – α. Solving P(x) = 0 thus reduces to solving the degree n – 1 ...
where h is a univariate polynomial in x 0 of degree D and g 0, ..., g n are univariate polynomials in x 0 of degree less than D. Given a zero-dimensional polynomial system over the rational numbers, the RUR has the following properties. All but a finite number linear combinations of the variables are separating variables.
When the non-homogeneous term is expressed as an exponential function, the ERF method or the undetermined coefficients method can be used to find a particular solution. If non-homogeneous terms can not be transformed to complex exponential function, then the Lagrange method of variation of parameters can be used to find solutions.