enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Disdyakis triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Disdyakis_triacontahedron

    v3.3.3.3.5 It is topologically related to a polyhedra sequence defined by the face configuration V4.6.2n . This group is special for having all even number of edges per vertex and form bisecting planes through the polyhedra and infinite lines in the plane, and continuing into the hyperbolic plane for any n ≥ 7.

  3. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  4. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    The triakis truncated tetrahedron is a polyhedron constructed from a truncated tetrahedron by adding three tetrahedrons onto its triangular faces, as interpreted by the name "triakis". It is classified as plesiohedron, meaning it can tessellate in three-dimensional space known as honeycomb; an example is triakis truncated tetrahedral honeycomb ...

  5. Tridecahedron - Wikipedia

    en.wikipedia.org/wiki/Tridecahedron

    A space-filling tridecahedron [6] [7] is a tridecahedron that can completely fill three-dimensional space without leaving gaps. It has 13 faces, 30 edges, and 19 vertices. Among the thirteen faces, there are six trapezoids, six pentagons and one regular hexagon. [8] Dual polyhedron. The polyhedron's dual polyhedron is an enneadecahedron. It is ...

  6. Reuleaux tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_tetrahedron

    Bonnesen and Fenchel [4] conjectured that Meissner tetrahedra are the minimum-volume three-dimensional shapes of constant width, a conjecture which is still open. [5] In 2011 Anciaux and Guilfoyle [6] proved that the minimizer must consist of pieces of spheres and tubes over curves, which, being true for the Meissner tetrahedra, supports the conjecture.

  7. Facet (geometry) - Wikipedia

    en.wikipedia.org/wiki/Facet_(geometry)

    In three-dimensional geometry, a facet of a polyhedron is any polygon whose corners are vertices of the polyhedron, and is not a face. [1] [2] To facet a polyhedron is to find and join such facets to form the faces of a new polyhedron; this is the reciprocal process to stellation and may also be applied to higher-dimensional polytopes. [3]

  8. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).

  9. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane.