Search results
Results from the WOW.Com Content Network
Insulin is released by the pancreas in response to carbohydrates consumed in the diet. In states of insulin resistance, the same amount of insulin does not have the same effect on glucose transport and blood sugar levels. There are many causes of insulin resistance and the underlying process is still not completely understood.
Increased insulin secretion leads to hyperinsulinemia, but blood glucose levels remain within their normal range due to the decreased efficacy of insulin signaling. [4] However, the beta cells can become overworked and exhausted from being overstimulated, leading to a 50% reduction in function along with a 40% decrease in beta-cell volume. [ 9 ]
When levels of blood sugar rise, whether as a result of glycogen conversion, or from digestion of a meal, a different hormone is released from beta cells found in the islets of Langerhans in the pancreas. This hormone, insulin, causes the liver to convert more glucose into glycogen (this process is called glycogenesis), and to force about 2/3 ...
Diabetes, also known as diabetes mellitus, is a group of common endocrine diseases characterized by sustained high blood sugar levels. [10] [11] Diabetes is due to either the pancreas not producing enough insulin, or the cells of the body becoming unresponsive to the hormone's effects. [12]
Type 1 diabetes is caused by the destruction of β-cells—the only cells in the body that produce insulin—and the consequent progressive insulin deficiency. Without insulin, the body cannot respond effectively to increases in blood sugar. Due to this, people with diabetes have persistent hyperglycemia. [30]
This process is illustrated by the insulin receptor sites on target cells, e.g. liver cells, in a person with type 2 diabetes. [6] Due to the elevated levels of blood glucose in an individual, the β-cells (islets of Langerhans) in the pancreas must release more insulin than normal to meet the demand and return the blood to homeostatic levels. [7]
Pancreatic beta cell function (synonyms G β or, if calculated from fasting concentrations of insulin and glucose, HOMA-Beta or SPINA-GBeta) is one of the preconditions of euglycaemia, i.e. normal blood sugar regulation. It is defined as insulin secretory capacity, i.e. the maximum amount of insulin to be produced by beta cells in a given unit ...
Type 2 diabetes is a progressive condition in which the body becomes resistant to the normal effects of insulin and/or gradually loses the capacity to produce enough insulin in the pancreas. [2] Pre-diabetes means that the blood sugar level is higher than normal but not yet high enough to be type 2 diabetes. [3]