Search results
Results from the WOW.Com Content Network
Redox conditions are measured according to the redox potential (E h) in volts, which represents the tendency for electrons to transfer from an electron donor to an electron acceptor. E h can be calculated using half reactions and the Nernst equation . [ 1 ]
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET reactions. ET reactions are relevant to photosynthesis and respiration and commonly involve transition ...
Cyclic voltammetry (CV) has become an important and widely used electroanalytical technique in many areas of chemistry. It is often used to study a variety of redox processes, to determine the stability of reaction products, the presence of intermediates in redox reactions, [10] electron transfer kinetics, [11] and the reversibility of a ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
Electron transfer reactions are central to myriad processes and properties in soils, and redox potential, quantified as Eh (platinum electrode potential relative to the standard hydrogen electrode) or pe (analogous to pH as -log electron activity), is a master variable, along with pH, that controls and is governed by chemical reactions and ...
Inner sphere electron transfer (IS ET) or bonded electron transfer [1] is a redox chemical reaction that proceeds via a covalent linkage—a strong electronic interaction—between the oxidant and the reductant reactants. In inner sphere electron transfer, a ligand bridges the two metal redox centers during the electron transfer event. Inner ...
Latimer diagrams can be used in the construction of Frost diagrams, as a concise summary of the standard electrode potentials relative to the element.Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction.
These working electrodes are used in electrochemical studies when investigating reaction mechanisms related to redox chemistry, among other chemical phenomena. The more complex rotating ring-disk electrode can be used as a rotating disk electrode if the ring is left inactive during the experiment.