Search results
Results from the WOW.Com Content Network
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
where, if the discriminant b 2 −4ac is less than zero, then the polynomial will have two complex-conjugate solutions with real part −b/2a, which is negative for positive a and b. If the discriminant is equal to zero, there will be two coinciding real solutions at −b/2a.
Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0. On the other hand, the polynomial x 2 + ax + 1 is irreducible over F 4, but it splits over F 16, where it has the two roots ab and ab + a, where b is a root of x 2 + x + a in F 16. This is a special case of Artin–Schreier theory.
Graph of y = ax 2 + bx + c, where a and the discriminant b 2 − 4ac are positive, with. Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange).
The Sharp EL-5120 is a scientific programmable calculator. It has about 1 KB of total RAM available to the user, and has 4 basic operational modes: Real mode: it is the basic operational mode for directly performing standard algebraic and statistical calculations, as well as evaluating user-defined functions and numerically integrating them.
By the fundamental theorem of algebra, if the monic polynomial equation x 2 + bx + c = 0 has complex coefficients, it must have two (not necessarily distinct) complex roots. Unfortunately, the discriminant b 2 − 4c is not as useful in this situation, because it may be a complex number. Still, a modified version of the general theorem can be ...
Assume that the discriminant q = b 2 − 4ac is positive. In that case, define u and A by = +, and = = (). The quadratic integral can now ...
Yet the above logic is still valid to show that if abc = 0 then a = 0 or b = 0 or c = 0 if, instead of letting a = a and b = bc, one substitutes a for a and b for bc (and with bc = 0, substituting b for a and c for b). This shows that substituting for the terms in a statement isn't always the same as letting the terms from the statement equal ...