Search results
Results from the WOW.Com Content Network
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This vibrating glass beam may be modeled as a cantilever beam with acceleration, variable linear density, variable section modulus, some kind of dissipation, springy end loading, and possibly a point mass at the free end. Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the ...
Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple nor fixed). In reality ...
In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.
The conjugate-beam methods is an engineering method to derive the slope and displacement of a beam. A conjugate beam is defined as an imaginary beam with the same dimensions (length) as that of the original beam but load at any point on the conjugate beam is equal to the bending moment at that point divided by EI. [1]
A cantilever Timoshenko beam under a point load at the free end For a cantilever beam , one boundary is clamped while the other is free. Let us use a right handed coordinate system where the x {\displaystyle x} direction is positive towards right and the z {\displaystyle z} direction is positive upward.
The beam is initially straight with a cross section that is constant throughout the beam length. The beam has an axis of symmetry in the plane of bending. The proportions of the beam are such that it would fail by bending rather than by crushing, wrinkling or sideways buckling. Cross-sections of the beam remain plane during bending.
The middle example is created by an extension of a simple supported beam (such as the way a diving board is anchored and extends over the edge of a swimming pool). The bottom example is created by adding a Robin boundary condition to the beam element, which essentially adds an elastic spring to the end board. The top and bottom example may be ...