enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    Given this observed proportion, the confidence interval for the true probability of the coin landing on heads is a range of possible proportions, which may or may not contain the true proportion. A 95% confidence interval for the proportion, for instance, will contain the true proportion 95% of the times that the procedure for constructing the ...

  3. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    Methods for calculating confidence intervals for the binomial proportion appeared from the 1920s. [4] [5] The main ideas of confidence intervals in general were developed in the early 1930s, [6] [7] [8] and the first thorough and general account was given by Jerzy Neyman in 1937.

  4. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery. [3]

  5. Confidence and prediction bands - Wikipedia

    en.wikipedia.org/wiki/Confidence_and_prediction...

    For example, f(x) might be the proportion of people of a particular age x who support a given candidate in an election. If x is measured at the precision of a single year, we can construct a separate 95% confidence interval for each age. Each of these confidence intervals covers the corresponding true value f(x) with confidence 0.

  6. Coverage probability - Wikipedia

    en.wikipedia.org/wiki/Coverage_probability

    In statistical estimation theory, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. [1]

  7. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    So that with a sample of 20 points, 90% confidence interval will include the true variance only 78% of the time. [44] The basic / reverse percentile confidence intervals are easier to justify mathematically [45] [42] but they are less accurate in general than percentile confidence intervals, and some authors discourage their use. [42]

  9. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    By a similar argument, the numerator values of 3.51, 4.61, and 5.3 may be used for the 97%, 99%, and 99.5% confidence intervals, respectively, and in general the upper end of the confidence interval can be given as ⁡ (), where is the desired confidence level.