Search results
Results from the WOW.Com Content Network
Query plans for nested SQL queries can also be chosen using the same dynamic programming algorithm as used for join ordering, but this can lead to an enormous escalation in query optimization time. So some database management systems use an alternative rule-based approach that uses a query graph model.
Some query tools can generate embedded hints in the query, for use by the optimizer. Some databases - like Oracle - provide a plan table for query tuning. This plan table will return the cost and time for executing a query. Oracle offers two optimization approaches: CBO or Cost Based Optimization; RBO or Rule Based Optimization
The skyline operator is the subject of an optimization problem and computes the Pareto optimum on tuples with multiple dimensions.. This operator is an extension to SQL proposed by Börzsönyi et al. [1] to filter results from a database to keep only those objects that are not worse in multiple dimensions than any other.
Query Optimization This paper is an introduction into the use of the relational algebra in optimizing queries, and includes numerous citations for more in-depth study. Relational Algebra System for Oracle and Microsoft SQL Server; Pireal – An experimental educational tool for working with Relational Algebra
The main application of query containment is in query optimization: Deciding whether two queries are equivalent is possible by simply checking mutual containment. The query containment problem is undecidable for relational algebra and SQL but is decidable and NP-complete for conjunctive queries.
SQL was initially developed at IBM by Donald D. Chamberlin and Raymond F. Boyce after learning about the relational model from Edgar F. Codd [12] in the early 1970s. [13] This version, initially called SEQUEL (Structured English Query Language), was designed to manipulate and retrieve data stored in IBM's original quasirelational database management system, System R, which a group at IBM San ...
Identifying whether a query is monotonic can be crucial for query optimization, especially in view maintenance and data stream management. Since the answer set for a monotonic query can only grow as more tuples are added to the database, query processing may be optimized by executing only the new portions of the database and adding the new ...
A query failing to be sargable is known as a non-sargable query and typically has a negative effect on query time, so one of the steps in query optimization is to convert them to be sargable. The effect is similar to searching for a specific term in a book that has no index, beginning at page one each time, instead of jumping to a list of ...