Search results
Results from the WOW.Com Content Network
The significance level is 5% and the number of cases is 60. Power of unpaired and paired two-sample t-tests as a function of the correlation. The simulated random numbers originate from a bivariate normal distribution with a variance of 1 and a deviation of the expected value of 0.4. The significance level is 5% and the number of cases is 60.
More precisely, a study's defined significance level, denoted by , is the probability of the study rejecting the null hypothesis, given that the null hypothesis is true; [4] and the p-value of a result, , is the probability of obtaining a result at least as extreme, given that the null hypothesis is true. [5]
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained. The one-tailed critical value C α ≈ 1.645 corresponds to the chosen significance level.
A desired significance level α would then define a corresponding "rejection region" (bounded by certain "critical values"), a set of values t is unlikely to take if was correct. If we reject H 0 {\displaystyle H_{0}} in favor of H 1 {\displaystyle H_{1}} only when the sample t takes those values, we would be able to keep the probability of ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
In order to calculate power, the user must know four of five variables: either number of groups, number of observations, effect size, significance level (α), or power (1-β). G*Power has a built-in tool for determining effect size if it cannot be estimated from prior literature or is not easily calculable.