Search results
Results from the WOW.Com Content Network
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
The problem is to find the hider in the shortest time possible. Generally, since the hider could be on either side of the searcher and an arbitrary distance away, the searcher has to oscillate back and forth, i.e., the searcher has to go a distance x 1 in one direction, return to the origin and go distance x 2 in the other direction, etc., (the ...
Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem. [3]: ND25, ND27 Clique cover problem [2] [3]: GT17
One example is the constrained shortest path problem, [16] which attempts to minimize the total cost of the path while at the same time maintaining another metric below a given threshold. This makes the problem NP-complete (such problems are not believed to be efficiently solvable for large sets of data, see P = NP problem ).
Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a space M and a query point q ∈ M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of Computer Programming (1973) called it the post-office problem, referring to an application of assigning to a residence the nearest post ...
For example, if the current node A is marked with a distance of 6, and the edge connecting it with its neighbor B has length 2, then the distance to B through A is 6 + 2 = 8. If B was previously marked with a distance greater than 8, then update it to 8 (the path to B through A is shorter).
The Team Orienteering Problem (TOP) which is the most studied variant of the VRPP, [4] [5] [6] The Capacitated Team Orienteering Problem (CTOP), The TOP with Time Windows (TOPTW). Vehicle Routing Problem with Pickup and Delivery (VRPPD): A number of goods need to be moved from certain pickup locations to other delivery locations.