Search results
Results from the WOW.Com Content Network
The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice—once for differential equations and once again for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale (also known as a time-set ...
When this happens, the limit of the product of these two factors will equal the product of the limits of the factors. The two factors are Q(g(x)) and (g(x) − g(a)) / (x − a). The latter is the difference quotient for g at a, and because g is differentiable at a by assumption, its limit as x tends to a exists and equals g′(a).
Further suppose that f is continuous at a and differentiable on some open interval containing a, except possibly at a itself. If there exists a positive number r > 0 such that for every x in (a − r, a) we have f ′ (x) ≥ 0, and for every x in (a, a + r) we have f ′ (x) ≤ 0, then f has a local maximum at a.
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h , h represents a small change in x , and it can be either positive or negative.
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
Image source: Getty Images. 1. The income you earn over your career. How much you earn is the biggest deciding factor in how big your Social Security checks will be.
A function of a real variable is differentiable at a point of its domain, if its domain contains an open interval containing , and the limit = (+) exists. [2] This means that, for every positive real number , there exists a positive real number such that, for every such that | | < and then (+) is defined, and | (+) | <, where the vertical bars denote the absolute value.