enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. JavaScript syntax - Wikipedia

    en.wikipedia.org/wiki/JavaScript_syntax

    Numbers are represented in binary as IEEE 754 floating point doubles. Although this format provides an accuracy of nearly 16 significant digits, it cannot always exactly represent real numbers, including fractions. This becomes an issue when comparing or formatting numbers. For example:

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, the number 2469/200 is a floating-point number in base ten with five digits: / = = ⏟ ⏟ ⏞ However, unlike 2469/200 = 12.345, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346.

  4. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.

  5. Data type - Wikipedia

    en.wikipedia.org/wiki/Data_type

    In many C compilers the float data type, for example, is represented in 32 bits, in accord with the IEEE specification for single-precision floating point numbers. They will thus use floating-point-specific microprocessor operations on those values (floating-point addition, multiplication, etc.).

  6. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number is shifted right by 3 digits. We proceed with the usual addition method: The following example is decimal, which simply means the base is 10. 123456.7 = 1.234567 × 10 5 101.7654 = 1.017654 × 10 2 = 0. ...

  7. Primitive data type - Wikipedia

    en.wikipedia.org/wiki/Primitive_data_type

    Because floating-point numbers have limited precision, only a subset of real or rational numbers are exactly representable; other numbers can be represented only approximately. Many languages have both a single precision (often called float ) and a double precision type (often called double ).

  8. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.