Search results
Results from the WOW.Com Content Network
Numbers are represented in binary as IEEE 754 floating point doubles. Although this format provides an accuracy of nearly 16 significant digits, it cannot always exactly represent real numbers, including fractions. This becomes an issue when comparing or formatting numbers. For example:
For example, the number 2469/200 is a floating-point number in base ten with five digits: / = = ⏟ ⏟ ⏞ However, unlike 2469/200 = 12.345, 7716/625 = 12.3456 is not a floating-point number in base ten with five digits—it needs six digits. The nearest floating-point number with only five digits is 12.346.
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.
In many C compilers the float data type, for example, is represented in 32 bits, in accord with the IEEE specification for single-precision floating point numbers. They will thus use floating-point-specific microprocessor operations on those values (floating-point addition, multiplication, etc.).
A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number is shifted right by 3 digits. We proceed with the usual addition method: The following example is decimal, which simply means the base is 10. 123456.7 = 1.234567 × 10 5 101.7654 = 1.017654 × 10 2 = 0. ...
Because floating-point numbers have limited precision, only a subset of real or rational numbers are exactly representable; other numbers can be represented only approximately. Many languages have both a single precision (often called float ) and a double precision type (often called double ).
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23 ) × 2 127 ≈ 3.4028235 ...
In a normal floating-point value, there are no leading zeros in the significand (also commonly called mantissa); rather, leading zeros are removed by adjusting the exponent (for example, the number 0.0123 would be written as 1.23 × 10 −2). Conversely, a denormalized floating-point value has a significand with a leading digit of zero.