Search results
Results from the WOW.Com Content Network
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as is parametric statistics . [ 1 ]
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.
Assumptions, parametric and non-parametric: There are two groups of statistical tests, parametric and non-parametric. The choice between these two groups needs to be justified. The choice between these two groups needs to be justified.
Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference. Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other sample quantiles.
Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to test whether a sample came from a ...
Not all statistical packages support post-hoc analysis for Friedman's test, but user-contributed code exists that provides these facilities (for example in SPSS, [10] and in R. [11]). Also, there is a specialized package available in R containing numerous non-parametric methods for post-hoc analysis after Friedman. [12]
In statistics, kernel regression is a non-parametric technique to estimate the conditional expectation of a random variable.The objective is to find a non-linear relation between a pair of random variables X and Y.