Search results
Results from the WOW.Com Content Network
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
In contrast, the equilibrium contact angle described by the Young-Laplace equation is measured from a static state. Static measurements yield values in-between the advancing and receding contact angle depending on deposition parameters (e.g. velocity, angle, and drop size) and drop history (e.g. evaporation from time of deposition).
Experimental demonstration of Laplace pressure with soap bubbles. The Laplace pressure is the pressure difference between the inside and the outside of a curved surface that forms the boundary between two fluid regions. [1] The pressure difference is caused by the surface tension of the interface between liquid and gas, or between two ...
Schematic of capillary rise of water to demonstrate measurements used in the Young-Laplace equation. The Young–Laplace equation is the force up description of capillary pressure, and the most commonly used variation of the capillary pressure equation: [2] [1] = where:
At the meniscus interface, due to the surface tension, there is a pressure difference of =, where is the pressure on the convex side; and is known as Laplace pressure. If the tube has a circular section of radius r 0 {\displaystyle r_{0}} , and the meniscus has a spherical shape, the radius of curvature is r = r 0 / cos θ {\displaystyle r ...
At the point of the maximum bubble pressure, the bubble has a complete hemispherical shape whose radius is identical to the radius of the capillary denoted by Rcap. The surface tension can be determined using the Young–Laplace equation in the reduced form for spherical bubble shape within the liquid. [3]
The cylindrical harmonics for (k,n) are now the product of these solutions and the general solution to Laplace's equation is given by a linear combination of these solutions: (,,) = | | (,) (,) where the () are constants with respect to the cylindrical coordinates and the limits of the summation and integration are determined by the boundary ...
Young–Laplace equation; Darcy–Weisbach equation. Given that the head loss h f expresses the pressure loss Δp as the height of a column of fluid,