enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The angular momentum equation can be used to relate the moment of the resultant force on a body about an axis (sometimes called torque), and the rate of rotation about that axis. Torque and angular momentum are related according to =, just as F = dp/dt in linear dynamics. In the absence of an external torque, the angular momentum of a body ...

  5. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    In addition, a moving charged body in a magnetic field experiences a force that is also proportional to its charge, in a direction perpendicular to both the field and the body's direction of motion. Using the vector cross product , F = q E + q v × B . {\displaystyle \mathbf {F} =q\mathbf {E} +q\mathbf {v} \times \mathbf {B} .}

  7. Curvilinear motion - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_motion

    The motion of an object moving in a curved path is called curvilinear motion. [1] Example: A stone thrown into the air at an angle . Curvilinear motion describes the motion of a moving particles that conforms to a known or fixed curve.

  8. Light field - Wikipedia

    en.wikipedia.org/wiki/Light_field

    A light field parameterized this way is sometimes called a light slab. Some alternative parameterizations of the 4D light field, which represents the flow of light through an empty region of three-dimensional space. Left: points on a plane or curved surface and directions leaving each point. Center: pairs of points on the surface of a sphere.

  9. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    The force on a test particle subject only to gravity and electromagnetism is = +, where p α is the linear 4-momentum of the particle, t is any time coordinate parameterizing the world line of the particle, Γ β αγ is the Christoffel symbol (gravitational force field), and q is the electric charge of the particle.