Search results
Results from the WOW.Com Content Network
A reactor protection system is designed to immediately terminate the nuclear reaction. By breaking the nuclear chain reaction, the source of heat is eliminated.Other systems can then be used to remove decay heat from the core.
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
An important concern in the nuclear safety field is the aging of nuclear reactors. Quality Assurance Technicians, weld inspectors and radiographers use ultrasonic waves to look for cracks and other defects in hot metal parts, in order to identify "microscale" defects that lead to big cracks. [14]
A clean-up crew working to remove radioactive contamination after the Three Mile Island accident. Nuclear safety is defined by the International Atomic Energy Agency (IAEA) as "The achievement of proper operating conditions, prevention of accidents or mitigation of accident consequences, resulting in protection of workers, the public and the environment from undue radiation hazards".
A reactor protection system (RPS) is a set of nuclear safety and security components in a nuclear power plant designed to safely shut down the reactor and prevent the release of radioactive materials. The system can "trip" automatically (initiating a scram), or it can be tripped by the operators. Trips occur when the parameters meet or exceed ...
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
A nuclear criticality accident occurs from operations that involve fissile material and results in a sudden and potentially lethal release of radiation. Nuclear criticality safety practitioners attempt to prevent nuclear criticality accidents by analyzing normal and credible abnormal conditions in fissile material operations and designing safe ...
The nuclear power industry has improved the safety and performance of reactors, and has proposed new, safer (but generally untested) reactor designs but there is no guarantee that the reactors will be designed, built and operated correctly. [64]