Search results
Results from the WOW.Com Content Network
For example, the topological quotient of the metric space [,] identifying all points of the form (,) is not metrizable since it is not first-countable, but the quotient metric is a well-defined metric on the same set which induces a coarser topology. Moreover, different metrics on the original topological space (a disjoint union of countably ...
In mathematics, metric may refer to one of two related, but distinct concepts: A function which measures distance between two points in a metric space A metric tensor , in differential geometry, which allows defining lengths of curves, angles, and distances in a manifold
The metric system is a decimal-based system of measurement. The current international standard for the metric system is the International System of Units (Système international d'unités or SI), in which all units can be expressed in terms of seven base units: the metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and ...
For example, driving distances are normally given in kilometres (symbol km) rather than in metres. Here the metric prefix 'kilo-' (symbol 'k') stands for a factor of 1000; thus, 1 km = 1000 m. The SI provides twenty-four metric prefixes that signify decimal powers ranging from 10 −30 to 10 30, the most recent being adopted in 2022.
Multiples and submultiples of metric units are related by powers of ten and their names are formed with prefixes. This relationship is compatible with the decimal system of numbers and it contributes greatly to the convenience of metric units. In the early metric system there were two base units, the metre for length and the gram for mass. The ...
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number < such that for all x and y in M, ((), ()) (,).
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic . Each prefix has a unique symbol that is prepended to any unit symbol.
Completeness is a property of the metric and not of the topology, meaning that a complete metric space can be homeomorphic to a non-complete one. An example is given by the real numbers, which are complete but homeomorphic to the open interval (0,1), which is not complete.