Search results
Results from the WOW.Com Content Network
The honeycomb is a well-known example of tessellation in nature with its hexagonal cells. [82] In botany, the term "tessellate" describes a checkered pattern, for example on a flower petal, tree bark, or fruit. Flowers including the fritillary, [83] and some species of Colchicum, are characteristically tessellate. [84]
Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically . Natural patterns include symmetries , trees , spirals , meanders , waves , foams , tessellations , cracks and stripes. [ 1 ]
Hyperbolic; Article Vertex configuration Schläfli symbol Image Snub tetrapentagonal tiling: 3 2.4.3.5 : sr{5,4} Snub tetrahexagonal tiling: 3 2.4.3.6 : sr{6,4} Snub tetraheptagonal tiling
Sunrise on the tessellated pavement at Eaglehawk Neck, Tasmania, illustrating the pan formation of tessellation. The most well known example of a tessellated pavement is the Tessellated Pavement that is found at Lufra, Eaglehawk Neck on the Tasman Peninsula of Tasmania. This tessellated pavement consists of a marine platform on the shore of ...
Many patterns seen in nature are closely approximated by a centroidal Voronoi tessellation. Examples of this include the Giant's Causeway, the cells of the cornea, [5] and the breeding pits of the male tilapia. [3]
With larger Fibonacci pairs, the pattern becomes complex and non-repeating. This tends to occur with a basal configuration. Examples can be found in composite flowers and seed heads. The most famous example is the sunflower head. This phyllotactic pattern creates an optical effect of criss-crossing spirals.
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
Reptiles depicts a desk upon which is a two dimensional drawing of a tessellated pattern of reptiles and hexagons, Escher's 1939 Regular Division of the Plane. [2] [3] [1] The reptiles at one edge of the drawing emerge into three dimensional reality, come to life and appear to crawl over a series of symbolic objects (a book on nature, a geometer's triangle, a three dimensional dodecahedron, a ...