Search results
Results from the WOW.Com Content Network
The honeycomb is a well-known example of tessellation in nature with its hexagonal cells. [82] In botany, the term "tessellate" describes a checkered pattern, for example on a flower petal, tree bark, or fruit. Flowers including the fritillary, [83] and some species of Colchicum, are characteristically tessellate. [84]
Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically . Natural patterns include symmetries , trees , spirals , meanders , waves , foams , tessellations , cracks and stripes. [ 1 ]
Many patterns seen in nature are closely approximated by a centroidal Voronoi tessellation. Examples of this include the Giant's Causeway, the cells of the cornea, [5] and the breeding pits of the male tilapia. [3]
Hyperbolic; Article Vertex configuration Schläfli symbol Image Snub tetrapentagonal tiling: 3 2.4.3.5 : sr{5,4} Snub tetrahexagonal tiling: 3 2.4.3.6 : sr{6,4} Snub tetraheptagonal tiling
In the simplest case, shown in the first picture, we are given a finite set of points {, …} in the Euclidean plane.In this case each site is one of these given points, and its corresponding Voronoi cell consists of every point in the Euclidean plane for which is the nearest site: the distance to is less than or equal to the minimum distance to any other site .
The tesseract can make a regular tessellation of 4-dimensional hyperbolic space, with 5 tesseracts around each face, with Schläfli symbol {4,3,3,5}, called an order-5 tesseractic honeycomb. The Ammann–Beenker tiling is an aperiodic tiling in 2 dimensions obtained by cut-and-project on the tesseractic honeycomb along an eightfold rotational ...
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}.
With larger Fibonacci pairs, the pattern becomes complex and non-repeating. This tends to occur with a basal configuration. Examples can be found in composite flowers and seed heads. The most famous example is the sunflower head. This phyllotactic pattern creates an optical effect of criss-crossing spirals.