enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antibonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Antibonding_molecular_orbital

    Antibonding molecular orbitals (MOs) are normally higher in energy than bonding molecular orbitals. Bonding and antibonding orbitals form when atoms combine into molecules. [ 3 ] If two hydrogen atoms are initially far apart, they have identical atomic orbitals .

  3. Bonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Bonding_molecular_orbital

    The MO diagram for dihydrogen. In the classic example of the H 2 MO, the two separate H atoms have identical atomic orbitals. When creating the molecule dihydrogen, the individual valence orbitals, 1s, either: merge in phase to get bonding orbitals, where the electron density is in between the nuclei of the atoms; or, merge out of phase to get antibonding orbitals, where the electron density ...

  4. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Molecular orbitals are said to be degenerate if they have the same energy. For example, in the homonuclear diatomic molecules of the first ten elements, the molecular orbitals derived from the p x and the p y atomic orbitals result in two degenerate bonding orbitals (of low energy) and two degenerate antibonding orbitals (of high energy). [13]

  5. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and the σ* 2p has some electron density between the nuclei.

  6. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Common bonding orbitals are sigma (σ) orbitals which are symmetric about the bond axis and pi (π) orbitals with a nodal plane along the bond axis. Less common are delta (δ) orbitals and phi (φ) orbitals with two and three nodal planes respectively along the bond axis. Antibonding orbitals are signified by the addition of an asterisk.

  7. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The d xy, d xz and d yz orbitals remain non-bonding orbitals. Some weak bonding (and anti-bonding) interactions with the s and p orbitals of the metal also occur, to make a total of 6 bonding (and 6 anti-bonding) molecular orbitals [7] Ligand-Field scheme summarizing σ-bonding in the octahedral complex [Ti(H 2 O) 6] 3+.

  8. Three-center two-electron bond - Wikipedia

    en.wikipedia.org/wiki/Three-center_two-electron_bond

    A three-center two-electron (3c–2e) bond is an electron-deficient chemical bond where three atoms share two electrons. The combination of three atomic orbitals form three molecular orbitals: one bonding, one non-bonding, and one anti-bonding. The two electrons go into the bonding orbital, resulting in a net bonding effect and constituting a ...

  9. Polyhedral skeletal electron pair theory - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_skeletal...

    The 18 framework molecular orbitals, (MOs), derived from the 18 boron atomic orbitals are: 1 bonding MO at the center of the cluster and 5 antibonding MOs from the 6 sp-radial hybrid orbitals; 6 bonding MOs and 6 antibonding MOs from the 12 tangential p-orbitals. The total skeletal bonding orbitals is therefore 7, i.e. n + 1.