enow.com Web Search

  1. Ads

    related to: printable divisibility worksheets

Search results

  1. Results from the WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test divisibility by any number expressed as the product of prime factors , we can separately test for divisibility by each prime to its appropriate power. For example, testing divisibility by 24 (24 = 8×3 = 2 3 ×3) is equivalent to testing divisibility by 8 (2 3 ) and 3 simultaneously, thus we need only show divisibility by 8 and by 3 to ...

  3. 1001 (number) - Wikipedia

    en.wikipedia.org/wiki/1001_(number)

    Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...

  4. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  5. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    Euclid devoted part of his Elements to prime numbers and divisibility, topics that belong unambiguously to number theory and are basic to it (Books VII to IX of Euclid's Elements). In particular, he gave an algorithm for computing the greatest common divisor of two numbers (the Euclidean algorithm; Elements, Prop.

  6. Zsigmondy's theorem - Wikipedia

    en.wikipedia.org/wiki/Zsigmondy's_theorem

    In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if > > are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer <, with the following exceptions:

  7. Division lattice - Wikipedia

    en.wikipedia.org/wiki/Division_lattice

    The non-negative integers partially ordered by divisibility. The division lattice is an infinite complete bounded distributive lattice whose elements are the natural numbers ordered by divisibility. Its least element is 1, which divides all natural numbers, while its greatest element is 0, which is divisible by all natural numbers.

  1. Ads

    related to: printable divisibility worksheets