Search results
Results from the WOW.Com Content Network
The base diffusion model can only generate unconditionally from the whole distribution. For example, a diffusion model learned on ImageNet would generate images that look like a random image from ImageNet. To generate images from just one category, one would need to impose the condition, and then sample from the conditional distribution.
In probability theory and statistics, diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [ 1 ] for dilute gases and Josef Stefan [ 2 ] for liquids.
Diagram of the latent diffusion architecture used by Stable Diffusion The denoising process used by Stable Diffusion. The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the desired image depicting a representation of the ...
Reaction–diffusion systems are mathematical models that correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local chemical reactions in which the substances are transformed into each other, and diffusion which causes the substances to spread out ...
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...