enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optical rotatory dispersion - Wikipedia

    en.wikipedia.org/wiki/Optical_rotatory_dispersion

    Circular dichroism causes incident linearly polarized light to become elliptically polarized. The two phenomena are closely related, just as are ordinary absorption and dispersion. If the entire optical rotatory dispersion spectrum is known, the circular dichroism spectrum can be calculated, and vice versa.

  3. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]

  4. Dispersive prism - Wikipedia

    en.wikipedia.org/wiki/Dispersive_prism

    A ray trace through a prism with apex angle α. Regions 0, 1, and 2 have indices of refraction, , and , and primed angles ′ indicate the ray's angle after refraction.. Ray angle deviation and dispersion through a prism can be determined by tracing a sample ray through the element and using Snell's law at each interface.

  5. Optics - Wikipedia

    en.wikipedia.org/wiki/Optics

    Dispersion occurs when different frequencies of light have different phase velocities, due either to material properties (material dispersion) or to the geometry of an optical waveguide (waveguide dispersion). The most familiar form of dispersion is a decrease in index of refraction with increasing wavelength, which is seen in most transparent ...

  6. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Such dispersion of light in glass or water underlies the origin of rainbows and other optical phenomena, in which different wavelengths appear as different colors. In optical instruments, dispersion leads to chromatic aberration ; a color-dependent blurring that sometimes is the resolution-limiting effect.

  7. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]

  8. Prism (optics) - Wikipedia

    en.wikipedia.org/wiki/Prism_(optics)

    Spectral dispersion is the best known property of optical prisms, although not the most frequent purpose of using optical prisms in practice. Reflective They are typically used to erect the image in binoculars or single-lens reflex cameras – without the prisms the image would be upside down for the user.

  9. Optical spectrometer - Wikipedia

    en.wikipedia.org/wiki/Optical_spectrometer

    The light then passed through a prism (in hand-held spectroscopes, usually an Amici prism) that refracted the beam into a spectrum because different wavelengths were refracted different amounts due to dispersion. This image was then viewed through a tube with a scale that was transposed upon the spectral image, enabling its direct measurement.