Search results
Results from the WOW.Com Content Network
Spur-gear differential. A spur-gear differential has an equal-sized spur gears at each end, each of which is connected to an output shaft. [8] The input torque (i.e. from the engine or transmission) is applied to the differential via the rotating carrier. [8] Pinion pairs are located within the carrier and rotate freely on pins supported by the ...
Csonka transaxle from 1908 Drawing of the "Alfa Transaxle" layout, with gearbox mounted in block at the rear differential; also inboard brakes to reduce unsprung mass. A transaxle is a single mechanical device which combines the functions of an automobile's transmission, axle, and differential into one integrated assembly. [1]
Bevel gears are most often mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well. [1] The pitch surface of bevel gears is a cone, known as a pitch cone. Bevel gears change the axis of rotation of rotational power delivery and are widely used in mechanical settings. Bevel gear on roller shutter door.
A limited-slip differential (LSD) is a type of differential gear train that allows its two output shafts to rotate at different speeds but limits the maximum difference between the two shafts. Limited-slip differentials are often known by the generic trademark Positraction , a brand name owned by General Motors and originally used for its ...
Spiral bevel gear. A spiral bevel gear is a bevel gear with helical teeth. The main application of this is in a vehicle differential, where the direction of drive from the drive shaft must be turned 90 degrees to drive the wheels. The helical design produces less vibration and noise than conventional straight-cut or spur-cut gear with straight ...
The powertrain consists of the prime mover (e.g. an internal combustion engine and/or one or more traction motors) and the drivetrain - all of the components that convert the prime mover's power into movement of the vehicle (e.g. the transmission, driveshafts, differential and axles); [4] [5] whereas the drivetrain does not include the power ...
The differential ratio multiplies with the transmission ratio, so in 1st gear, the engine makes 2.97 × 3.42 = 10.16 revolutions for every revolution of the wheels. The car's tires can almost be thought of as a third type of gearing. This car is equipped with 295/35-18 tires, which have a circumference of 82.1 inches.
Power and torque curves for two example car engines. Since the torque and power output of an internal combustion engine varies with its rpm, automobiles powered by ICEs require multiple gear ratios to keep the engine within its power band to produce optimal power, fuel efficiency, and smooth operation. Multiple gear ratios are also needed to ...