Ad
related to: which division problem represents the sum of squares of 4education.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Education.com Blog
See what's new on Education.com,
explore classroom ideas, & more.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Digital Games
Search results
Results from the WOW.Com Content Network
The number of representations of a natural number n as the sum of four squares of integers is denoted by r 4 (n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.
In particular, for a prime number p we have the explicit formula r 4 (p) = 8(p + 1). [2] Some values of r 4 (n) occur infinitely often as r 4 (n) = r 4 (2 m n) whenever n is even. The values of r 4 (n) can be arbitrarily large: indeed, r 4 (n) is infinitely often larger than . [2]
Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.
Lagrange's four-square theorem states that every positive integer can be written as the sum of at most four squares. [ 5 ] [ 6 ] Four is one of four all-Harshad numbers . Each natural number divisible by 4 is a difference of squares of two natural numbers, i.e. 4 x = y 2 − z 2 {\displaystyle 4x=y^{2}-z^{2}} .
Every non-negative real number is a square, so p(R) = 1. For a finite field of odd characteristic, not every element is a square, but all are the sum of two squares, [1] so p = 2. By Lagrange's four-square theorem, every positive rational number is a sum of four squares, and not all are sums of three squares, so p(Q) = 4.
Hurwitz's theorem implies that multiplicative formulas for sums of squares can only occur in 1, 2, 4 and 8 dimensions, a result originally proved by Hurwitz in 1898. It is a special case of the Hurwitz problem, solved also in Radon (1922).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
Ad
related to: which division problem represents the sum of squares of 4education.com has been visited by 100K+ users in the past month
It’s an amazing resource for teachers & homeschoolers - Teaching Mama