Search results
Results from the WOW.Com Content Network
On the Sphere and Cylinder (Greek: Περὶ σφαίρας καὶ κυλίνδρου) is a treatise that was published by Archimedes in two volumes c. 225 BCE. [1] It most notably details how to find the surface area of a sphere and the volume of the contained ball and the analogous values for a cylinder , and was the first to do so.
Figure 2: Observed intensity (photons/(s·m 2 ·sr)) for a normal and off-normal observer; dA 0 is the area of the observing aperture and dΩ is the solid angle subtended by the aperture from the viewpoint of the emitting area element. The situation for a Lambertian surface (emitting or scattering) is illustrated in Figures 1 and 2.
In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous, targeting, guidance, and ...
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...
Diagram of Lambertian diffuse reflection. The black arrow shows incident radiance, and the red arrows show the reflected radiant intensity in each direction. When viewed from various angles, the reflected radiant intensity and the apparent area of the surface both vary with the cosine of the viewing angle, so the reflected radiance (intensity per unit area) is the same from all viewing angles.
The figure shows the drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere with a smooth surface, while the lighter line is for the case of a rough surface. The numbers along the line indicate several flow regimes and associated changes in the drag coefficient:
Sphere packing in a cylinder is a three-dimensional packing problem with the objective of packing a given number of identical spheres inside a cylinder of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called columnar structures .