Search results
Results from the WOW.Com Content Network
Sleep stages are characterized by spectral content of EEG: for instance, stage N1 refers to the transition of the brain from alpha waves (common in the awake state) to theta waves, whereas stage N3 (deep or slow-wave sleep) is characterized by the presence of delta waves. [107] The normal order of sleep stages is N1 → N2 → N3 → N2 → REM.
Beta waves, or beta rhythm, are neural oscillations (brainwaves) in the brain with a frequency range of between 12.5 and 30 Hz (12.5 to 30 cycles per second). Several different rhythms coexist, with some being inhibitory and others excitory in function.
One of the important questions in sleep research is clearly defining the sleep state. This problem arises because sleep was traditionally defined as a state of consciousness and not as a physiological state, [14] [15] thus there was no clear definition of what minimum set of events constitute sleep and distinguish it from other states of partial or no consciousness.
Known as slow-wave sleep or stage 3 non-REM sleep, this is the deepest stage of sleep and the hardest to wake up from. Brain activity slows down, muscles and bones strengthen, hormones regulate ...
The purpose of alpha activity during REM sleep has yet to be fully understood. Currently, there are arguments that alpha patterns are a normal part of REM sleep, and for the notion that it indicates a semi-arousal period. It has been suggested that this alpha activity is inversely related to REM sleep pressure. [citation needed]
In older children and adults, it tends to appear during meditative, drowsy, hypnotic or sleeping states, but not during the deepest stages of sleep. Theta from the midfrontal cortex is specifically related to cognitive control and alterations in these theta signals are found in multiple psychiatric and neurodevelopmental disorders.
Brainwave entrainment, also referred to as brainwave synchronization or neural entrainment, refers to the observation that brainwaves (large-scale electrical oscillations in the brain) will naturally synchronize to the rhythm of periodic external stimuli, such as flickering lights, [1] speech, [2] music, [3] or tactile stimuli.
Long-term practitioners of meditation such as Tibetan Buddhist monks exhibit both increased gamma-band activity at baseline as well as significant increases in gamma synchrony during meditation, as determined by scalp EEG. [2] fMRI on the same monks revealed greater activation of right insular cortex and caudate nucleus during meditation. [43]