Search results
Results from the WOW.Com Content Network
Einstein's derivation of the gravitational field equations was delayed because of the hole argument which he created in 1913. [1] However the problem was not as given in the section above. By 1912, the time Einstein started what he called his "struggle with the meaning of the coordinates", [ 2 ] he already knew to search for tensorial equations ...
However, in 1913 Einstein abandoned that approach, arguing that it is inconsistent based on the "hole argument". In 1914 and much of 1915, Einstein was trying to create field equations based on another approach. When that approach was proven to be inconsistent, Einstein revisited the concept of general covariance and discovered that the hole ...
The issue of whether covariance is a real restriction and if so in what sense appears in various contributions to the philosophical debate concerning Einstein's "hole argument." This argument initially had led Einstein in 1913 for a time to reject generally covariant theories, because a region of space/time without forces would undermine ...
Einstein also recognized another element of the definition of an exact solution: it should be a Lorentzian manifold (meeting additional criteria), i.e. a smooth manifold. But in working with general relativity, it turns out to be very useful to admit solutions which are not everywhere smooth; examples include many solutions created by matching ...
Because this particle has angular momentum, it can only be captured by the black hole if the maximum potential of the black hole is less than () /. Solving the above effective potential equation for the maximum under the given conditions results in a maximum potential of exactly ( e 2 − 1 ) / 2 {\displaystyle (e^{2}-1)/2} .
This is the point of the argument I inserted - Einstein's Hole argument (Hilbert's version of the argument actually). The resolution of this alarming conclusion was given in the article - basically, in GR position and motion has become completely relative and physical obejects are located with respect to one another only and not with respect to ...
Einstein himself considered the introduction of the cosmological constant in his 1917 paper founding cosmology as a "blunder". [3] The theory of general relativity predicted an expanding or contracting universe, but Einstein wanted a static universe which is an unchanging three-dimensional sphere, like the surface of a three-dimensional ball in four dimensions.
ER = EPR is a conjecture in physics stating that two entangled particles (a so-called Einstein–Podolsky–Rosen or EPR pair) are connected by a wormhole (or Einstein–Rosen bridge) [1] [2] and is thought by some to be a basis for unifying general relativity and quantum mechanics into a theory of everything. [1]