Search results
Results from the WOW.Com Content Network
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.
The ML "model" includes a specification of a pdf, which in this case is the pdf of the unknown source signals . Using ML ICA , the objective is to find an unmixing matrix that yields extracted signals y = W x {\displaystyle y=\mathbf {W} x} with a joint pdf as similar as possible to the joint pdf p s {\displaystyle p_{s}} of the unknown source ...
Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.
[60]: 354, 11.4.2.5 This does not mean that it is efficient to use Gaussian mixture modelling to compute k-means, but just that there is a theoretical relationship, and that Gaussian mixture modelling can be interpreted as a generalization of k-means; on the contrary, it has been suggested to use k-means clustering to find starting points for ...
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
The unlabeled data are distributed according to a mixture of individual-class distributions. In order to learn the mixture distribution from the unlabeled data, it must be identifiable, that is, different parameters must yield different summed distributions. Gaussian mixture distributions are identifiable and commonly used for generative models.