Search results
Results from the WOW.Com Content Network
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, [1] as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible.
An oracle machine or o-machine is a Turing a-machine that pauses its computation at state "o" while, to complete its calculation, it "awaits the decision" of "the oracle"—an entity unspecified by Turing "apart from saying that it cannot be a machine" (Turing (1939), The Undecidable, p. 166–168).
Smith's proof has unleashed a debate on the precise operational conditions a Turing machine must satisfy in order for it to be candidate universal machine. A universal (2,3) Turing machine has conceivable applications. [19] For instance, a machine that small and simple can be embedded or constructed using a small number of particles or molecules.
Turing completeness is significant in that every real-world design for a computing device can be simulated by a universal Turing machine. The Church–Turing thesis states that this is a law of mathematics – that a universal Turing machine can, in principle, perform any calculation that any other programmable computer can.
Turing's a-machine model. Turing's a-machine (as he called it) was left-ended, right-end-infinite. He provided symbols əə to mark the left end. A finite number of tape symbols were permitted. The instructions (if a universal machine), and the "input" and "out" were written only on "F-squares", and markers were to appear on "E-squares".
The universal function is an abstract version of the universal Turing machine, thus the name of the theorem. Roger's equivalence theorem provides a characterization of the Gödel numbering of the computable functions in terms of the s mn theorem and the UTM theorem.
A Turing machine which has the ability to simulate any other Turing machine is called universal - in other words, a Turing machine (TM) is said to be a universal Turing machine (or UTM) if, given any other TM, there is a some input (or "header") such that the first TM given that input "header" will forever after behave like the second TM.
Cook proved that Rule 110 was universal (or Turing complete) by showing it was possible to use the rule to emulate another computational model, the cyclic tag system, which is known to be universal. He first isolated a number of spaceships , self-perpetuating localized patterns, that could be constructed on an infinitely repeating pattern in a ...