Search results
Results from the WOW.Com Content Network
To calculate the velocity distribution of particles hitting this small area, we must take into account that all the particles with (,,) that hit the area within the time interval are contained in the tilted pipe with a height of and a volume of (); Therefore, compared to the Maxwell distribution, the velocity distribution will have an ...
Gravity tends to make the particles settle, whereas diffusion acts to homogenize them, driving them into regions of smaller concentration. Under the action of gravity, a particle acquires a downward speed of v = μmg, where m is the mass of the particle, g is the acceleration due to gravity, and μ is the particle's mobility in the fluid.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...
Because velocity and speed are related to energy, Equation can be used to derive relationships between temperature and the speeds of gas particles. All that is needed is to discover the density of microstates in energy, which is determined by dividing up momentum space into equal sized regions.
When we calculate the field energy we obtain not only a contribution from particles and forces that may be present but also a contribution from the vacuum field itself i.e. the zero-point field energy. In other words, the zero-point energy reappears even though we may have deleted it from the Hamiltonian. [94]
The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...
The moving ball can then hit something and push it, doing work on what it hits. The kinetic energy of a moving object is equal to the work required to bring it from rest to that speed, or the work the object can do while being brought to rest: net force × displacement = kinetic energy, i.e., =